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Abstract

Many of Salmonella enterica virulence-associated phenotypes, including its ability to manipulate various
host pathways are mediated by translocation of specific effector proteins via type 3 secretion systems
(T3SSs) into the host cell. Culturing Salmonella under a defined set of stimulating conditions in vitro
can mimic the physiological signals Salmonella senses during the infection and results in the secretion of
these effectors into the growth medium. Here we describe a Salmonelln secretion assay to identify and
quantify protein substrates secreted by T3SS-1 and demonstrate how this method can be utilized to study
the secretion of T3SS-1 effectors and flagellum components in different genetic backgrounds or under
varying growth conditions.

Key words Salmonelin, Secretion assay, Flagella, Type 3 secretion system (T3SS), Effectors, SPI-1,
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1 Introduction

Salmonelln enterica is a gram-negative, facultative intracellular bac-
terial pathogen responsible for an annual 180 million infections and
300,000 deaths worldwide [1]. Typhoidal and nontyphoidal sero-
vars can be classified into more than 2500 stereotypically distinct
serovars, according to the Kauffmann—-White scheme based on
three groups of antigens expressed on the bacterial surface
[2]. Many of the virulence determinants of S. enterica are secreted
to the extracellular environment, into neighboring bacterial cells or
directly into host cells by assorted bacterial secretion systems [3].
Type III secretion systems 1 and 2 encoded on Salmonelln
pathogenicity island (SPI) 1 and 2, respectively. T3SS-1 is asso-
ciated with the early stage of infection, mediates invasion of intesti-
nal epithelial cells and stimulation of intestinal inflammation, by the
secretion of designated effectors across the host cell membrane into
its cytoplasm. Currently, at least 10 effectors (SopB [SigD], SopA,
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Fig. 1 The secretome of S. Typhimurium grown in different growth media. S.
Typhimurium SL1344 (STM) cultures were grown in LB for 5.5 h and in
N-minimal medium for 7.5 h at 37 °C. Cultures supernatant were filtered and
precipitated by TCA. Equal amounts (25 uL) from the precipitated fractions were
separated on 10% SDS—polyacrylamide gel and followed by Coomassie G-250
staining. The secreted protein profile of each culture is shown and the main
proteins are indicated by arrows

SipA, SipB, SipC, SipD, SptP [StpA], SopD, SopE, and SopE2) are
known to be secreted via T3SS-1, and at least 8 additional effectors
(AvrA, SIrP, SspH1, SteA, SteB, SteE, SpvD, and GtgE) can be
secreted by either T3SS-1 and T3SS-2 [4, 5]. T3SS-2 promotes
intracellular bacterial survival and systemic infection by the secre-
tion of about 30 effectors crossing the Salmonella containing vesi-
cle (SCV) into the host cell cytoplasm [6].

Another secretion system is the flagellum, which is evolution-
arily related to the T3SS and enables the bacteria to swim in liquids
and swarm on surfaces [7]. The flagellar T3SS exports flagellar
proteins from the bacterium cytoplasm through the growing struc-
ture from the base up, of the basal body, hook and filament during
the flagellum assembly [8].
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Fig. 2 Salmonella secretion assay of different genetic backgrounds. (a) S. Typhimurium SL1344 (STM) and S.
Paratyphi A 45157 (SPA) cultures were grown in LB at 37 °C for 5.5 h, and normalized to an 0Dgg 0f 2.4-2.6.
Exogenous human cytochrome C (8 ug) was added to the bacterial cultures as a spike-in and loading control.
Culture supernatants were precipitated by TCA, and equal amounts (25 uL) from the precipitated fractions
were separated on a 12% SDS—polyacrylamide gel and stained with Coomassie G-250. This panel is
reproduced from Elhadad et al. [11] with permission from the publisher (ASM Journals). (b) Relative
(to STM FIiC) quantification of FIiC, SipA, SipB, and SipC (normalize to Cytochrome C) was conducted using
Image J [12]

Salmonella senses environmental signals and conditions such as
nutrient availability, pH, temperature, and osmolarity and regulates
gene expression accordingly [9]. Under laboratory growth condi-
tions that mimic the small intestine milieu (nutrient rich LB
medium, slightly alkaline with high osmolarity), Sa/monella upre-
gulates the flagella and the SPI-1 gene expression and secretes
T3SS-1 effectors and flagellum components to the growth
medium. In contrast, under conditions that stimulate the SCV
environment that are poor in phosphate, manganese, and magne-
sium with acidic pH (like N-minimal media), the expression and
secretion of T3SS-1 effectors and flagellum component is
repressed [10].

The following Salmonella secretion assay protocol enables to
identify and quantity secreted proteins from different Salmonelln
serovars and genetic backgrounds, growing under varying growth
conditions. To demonstrate this protocol, we compared the
secreted proteins of Salmonella Typhimurium grown under SPI-1
and SPI-2 induction conditions (Fig. 1) and analyzed the secre-
tome of S. Typhimurium and Sa/monelln Paratyphi A cultured
under SPI-1 induction conditions (Fig. 2).
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2 Materials

2.1 Growth Media

1.

2.

Luria—Bertani broth (LB). For 1 L LB broth, dissolve 10 g
tryptone, 5 g yeast extract and 10 g NaCl in 1L dH,O.

N-minimal medium pH 5.8 [5 mM Kcl, 7.5 mM (NH4),SO4,
0.5 mM K,SO,, 80 mM MES, 38 mM glycerol, 0.1% casamino
acids, 24 pM MgCl,, 337 pM PO,3™ [13].

To prepare N-minimal medium, first make and autoclave to

sterilize the following stock solutions separately:

5% minimal salt solution. Weight 0932 g KCI, 248 g
(NH4),SO04, 0.218 g K,;SO4 46.66 g MES hydrate
[2-(N-Morpholino)ethanesulfonic acid hydrate], add ddH,O
to a final volume of 500 mL.

10% casamino acids stock solution. Dissolve 50 g casamino acids
in 500 mL ddH,O0.

25 mM MgCl,. Dissolve 0.238 g of MgCl, in 100 mL ddH,O.

0.1 M PO,3". Mix 80.2 mL of 1 M K,HPO, (dissolve 17.4 g
K,HPO, in 100 mL. dH,O) and 19.8 mL of 1 M KH,POy4
(dissolve 13.6 g KH,PO4 in 100 mL dH,0) and add 900 mL
ddH,O0.

To prepare 100 mL of N-minimal medium, mix 20 mL of 5 x

minimal salts solution, 0.6 mL 50% glycerol, 1 mL of 10% casamino
acids stock, 96 pL of 25 mM MgCl, 337 pL of 0.1 M PO43".

Adjust pH to 5.8 with HCI and filter-sterilize.

. Cytochrome C from equine heart (1 mg/mL). Weight 1 mg

Cytochrome C in 1 mL ddH,O, store at —20 °C.

. 10 mL sterile syringe.

. 33 mm sterile syringe filter unit with 0.22 pm hydrophilic

PVDF membrane (low protein binding).

4. Trichloroacetic acid (TCA) 6.1 N.

ul

. Ice-cold acetone (—20 °C).

6. SDS-PAGE sample buffer (2x). Mix 1.5 mL of 1 M Tris

pH 6.8, 1.2 mL of 10% SDS, 6 mL of 50% glycerol, 1.5 mL
of B-Mercaptoethanol, 0.18 mg of bromophenol blue. Aliquot
into 1 mL portions and store at —20 °C.

. 10%—12% SDS-polyacrylamide gel.
. Coomassie Brilliant Blue G-250 gel staining dye.
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3 Methods

1. Grow an overnight culture of S. Typhimurium (we normally

use S. Typhimurium SL1344 strain) or §. Paratyphi A
(we normally use S. Paratyphi A 45157 strain [14]) in 2 mL
LB broth using 16 x150 mm glass tubes (23 ml volume) with
appropriate antibiotic selection (see Note 1). Grow the culture
under aerobic conditions, on a roller drum or on an orbital

shaker at 250 rpm, at 37 °C.

. For secretion assay conducted under SPI-1 inducing condi-

tions, subculture by transferring 100 pL of the overnight
grown culture to 10 mL fresh LB medium in a 125 mL Erlen-
meyer flask. Grow the subculture for 5.5 h at 37 °C with
shaking (250 rpm) to reach early stationary phase (see Notes
2 and 3). Skip to step 4.

. For secretion assay under SPI-2 inducing conditions, transfer

0.5 mL of the overnight culture into a test tube and pellet the
bacteria in a microcentrifuge at 8500 g for 2 min. Remove the
supernatant and wash the bacterial pellet twice with 0.5 mL of
sterile N-minimal medium. Resuspend the bacterial pellet care-
fully and add 200 pL of the suspended washed bacteria to
10 mL of N-minimal medium in a 125 mL Erlenmeyer flask.
Subculture for 4-7.5 h at 37 °C with shaking at 250 rpm (see
Notes 2 and 4).

. To stop bacterial growth, place the flasks on ice and keep the

cultures cold for the entire procedure.

. Measure ODgq of the cultures. Normalize all assayed colures

to the same OD, using fresh growth medium to a final volume
of 9 mL. Transfer to 15 mL conical centrifuge tubes.

. To each OD-normalized culture (9 mL volume), add 9 pL of

human cytochrome C (1 mg/mL) as a spike-in control. Mix
gently by inverting the tube 2-3 times.

. Pellet the bacteria by centrifugation at 20,000 gfor 5 minat4 °C.

Carefully collect the top supernatant (about 8 mL) and transfer it
to a 10 mL syringe attach to a sterile 33 mm syringe filter unit,
with 0.22 pm PVDF membrane. Avoid disrupting the bacterial
pellet (see Note 5).

. Slowly and gently filter the supernatant into a clean 15 mL tube

(see Note 6).

. Transfer 7.2 mL of the filtered supernatant into a new 15 mL

conical centrifuge tube for TCA precipitation. Add 800 pL of
TCA to a final concentration of 10%. Gently mix by upturning
the tubes 2—-3 times and incubate the samples on ice for 1-3 h,
or overnight if convenient.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

To precipitate the proteins, centrifuge the samples at 20,000 »
for 45 min at 4 °C to pellet the TCA-insoluble fraction (see
Note 7).

Remove supernatant carefully and wash the pellet with 1.6 mL
ice-cold acetone and recentrifuge for 30 min at 20,000 gat4 °C.

Completely remove the supernatant and air-dry the pellet for
15 min at room temperature.

For cultures grown in LB, resuspend the pellet directly in
100 pL of SDS-PAGE sample buffer and boil for 5 min.

For cultures grown in N-minimal medium, resuspend the pel-
let directly in 60 pL of SDS-PAGE sample buffer and boil for
5 min (see Notes 8 and 9).

To collect the sample, briefly spin down the tubes at 300 gfora
tew seconds. Store the secreted protein fractions at —80 °C
freezer until SDS-PAGE analysis.

For SDS-PAGE analysis, run 25 pL of the secreted fractions on
10% SDS-polyacrylamide gel.

Stain the gel with Coomassie G-250 and image the gel using a
gel documentation system.

For §. enterica cultures grown in LB, the expected profile of the
secreted flagella components and the major T3SS-1 etfectors is
well characterized (Figs. 1, 2 and [11]) and therefore
SDS-PAGE and Coomassie staining may be sufficient for anal-
ysis. However, for profiling T3SS-2 effectors (see Note 10), or
in case when the analysis of an uncharacterized protein is
required, western blotting using specific antibodies is required.

For a relative (no absolute values) quantification of the secreted
proteins, use an image analysis software such as Image ]
[12]. Quantify the SDS-PAGE gel densitometry bands of the
desired proteins and normalize them to the spike-in loading
control of the cytochrome C signal (see Note 11).

4 Notes

. For §. Typhimurium SI.1344 use 50 pg/mL streptomycin.

Do not overgrow to minimize spontaneous cell lysis of cells.

Under these conditions a culture of S. Typhimurium S1.1344
reaches ODgqq of ~4.8.

Under these conditions, a culture of S. Typhimurium SL.1344
reaches ODggo of ~1.5.

. If you wish to determine the expression of a specific protein in

the whole bacterial fraction by western blotting, spin down
1 mL of bacterial culture at 20,000 g4 at 4 "C. Aspirate the



10.

11.
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supernatant and resuspend in 0.2 mL of SDS-PAGE sample
buffer (adjust volume according to the OD of the compared
cultures) and boil for 5 min. Store at —80 °C freezer until
needed.

Do not squeeze the remaining air via the syringe to avoid lysis
of residual bacteria. This ensures that traces of whole bacteria
proteins will not be carried over into the secreted fraction.

Mark the position of the tube in the rotor, as the pellet may not
be visible.

. If samples turn yellow (indicating acidity), add 1 pL of 1 M Tris

(pH 8.8) to the sample and mix. This will bring the sample to
neutral pH (blue).

The obtained pellet is very compact. Make sure to repeatedly
pipet the sample buffer on the tube walls to collect all the
precipitated protein.

T3SS-2 effectors are normally secreted to the medium in much
lower amounts than the major T3SS-1 effectors or the
flagellum components. Therefore, Western blotting or Liquid
chromatography—mass spectrometry are needed to analyze
T38S-2 effectors secretion.

For Image] detailed instructions: http://www.yorku.ca/
yisheng/Internal /Protocols/Image].pdf
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